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ABSTRACT

An experimental investigation of the behavior of flat-faced, impact-
pressure probes with a range of orifice-to-probe diameter ratios was
made in heated argon under conditions where M, = 4 to 14, Ty = 2700 to
4300°K, and Reg/in. = 30 to 430. At the lower Reynolds numbers the
measured impact pressure was found to decrease with the pressure
sensing orifice size. This result agrees with that found in heated nitro-
gen. As the Reynolds number increased this orifice effect became less
significant, and at the higher Reynolds numbers no decrease in meas-
ured impact pressure was noted for the smallest orifice tested. This
tends to confirm the assumption made in Ref. 1 that this behavior is
caused by a thermomolecular flow effect, Because this effect is a func-
tion solely of pressure at a particular temperature, the greater the
pressure the smaller the effect.

When Rea \ p2/p, is less than 800 in argon the measured impact
pressure was less than the true impact pressure and decreased to a
minimum value, approximately 93 percent of the true value. As the
Reynolds number decreased still further, the viscous effects became
dominant, and there was a sharp increase in the measured impact pres-~
sure.
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NOMENCLATURE

D Outside diameter of the impact-pressure probe

M, Free-stream Mach number

m Mass flow rate

Poe Reservoir pressure (cold flow)

Pop, Reservoir pressure (hot flow)

psm Measured impact pressure

po'i Ideal impact pressure

Reg Reynolds number based on outside prcobe diameter and
free-stream conditions

Reg Reynolds number based on outside probe diameter and
conditions behind a normal shock

TOC Reservoir temperature of gas {cold flow)

Toh Reservoir temperature of gas (hot flow)

Tw Wall temperature

Ag Mean free path based on conditions behind a normal shock

P Pensity in free stream

Po Density behind the normal shock

ix
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1.0 INTRODUCTION

As far as is known to the author, the results presented in Ref, 1
for the behavior of impact-pressure probes in a low-density, hyper-
velocity flow represent the only available experimental data for such
conditions in a diatomic gas. It was shown in that investigation that
not only was there the expected viscous effect which modified *he pres-
sure measured by an impact probe but that there was also an effect
associated with the size of the pressure sensing orifice. This report
extends these earlier experiments by presenting results from tests
under similar low-density, hypervelocity conditions in argon, a mon-
atomic gas. In the present series of tests, argon was used as the
working gas because it offered the cpportunity to examine the behavior
of the probes in a monatomic gas for which theory predicts a result
different from that for a diatomic gas. Also, the characteristics of
argon are such that a wide range of tunnel operating conditions could
be established with relative simplicity compared to other gases.

2.0 APPARATUS

2,1 WIND TUNNEL DESCRIPTION AND PERFORMANCE

The Low-Density, Hypervelocity (ILDH) Wind Tunne],is a continuous-
flow, high-enthalpy wind tunnel in operation at the von Karman Gas Dy-
namics Facility (VKF) of the Arnold Engineering Development Center
(AEDC), Air Force Systems Command (AFSC), US Air Force. Briefly,
the tunnel consists of a d-¢ arc heater, a stilling chamber, a conical
nozzle of 30-deg total angle, a test chamber with instrumentation, a
diffuser and a pumping system. A schematic drawing identifying some of
the components is shown in Fig. 1. A complete description of the LDH tun-
nel is given in Ref. 2.

In the present tests a number of simple, water-cooled, brass, conical
nozzles with a 30-deg total angle was used to accelerate the flow to super-
sconic speeds. The brass sections have throat diameters of 0. 200, 0. 397,
and 0. 750 inches, which produce Mach numbers at the exit plane in the
range from 4 to 8. 5. They can be used in conjunction with an aluminum

Manuscript released by author Ociober 1962.
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cone-frustum extension of 30-deg total angle which continues the expan-
sion of the three basic nozzles to the Mach number range from 7 to 14.

When argon is the working gas the arc heater operates at less than
15 kw, the gas flow rate ranges from 1 to 30 Ib/hr, Tp), ranges from
2700 to 4300°K, and pop, ranges from 1.0 to 6.0 psia. At the nozzle exit
and some distance downstream from it there is a clearly visible light
blue jet surrounded in mosf cases by a pink region. On investigation
with an impact-pressure probe the light blue region was found to corre-
spond approximately to the high speed core of flow. The colors in the
flow are thought to be caused by the excitation of a metastable argon state.

Good inflow characteristics to the nozzles under test were obtained
by using a 3-in, ~diam settling chamber upstream of the nozzle throat,
having a length of 4 in. for the 0. 200 and 0. 397--in. -diam throats and
8 in. for the 0. 750-in.-diam throat.

A complete description of the gas flow control, pressure measuring
system, reservoir temperature estimate, test probes, and holder is
given in Ref. 1. With regard to the reservoir temperature estimate,
the fact that argon is monatomic considerably simplifies this estimate,
since perfect gas laws apply. Hence, at constant mass flow, we have

.f'p 2
T = T _—(?Q. e
o o Lpoc ] m = const

2.2 TUNNEL OPERATING CONDITIONS

The useable flow regions existing in the conical nozzles were deter-
mined by making impact-pressure surveys. The most useable regions
of flow usually corresponded to a condition where the nozzle flow was
underexpanded and the nozzle shock was a considerable distance down-
stream of the nozzle exit ( > 6 in.). For some of the flow conditions, the
flow was overexpanded. In these cases the nozzle shock occurred nearer
the nozzle exit plane, and the useakle flow region was close to the nozzle
exit. Whether the flow was underexpanded or overexpanded, in all the
flow conditions investigated tnere was an axial Mach number gradient.
Ag in the series of tests reported in Ref. 1 this is not considered to be a
serious problem because only conditions at the probe face are important.
The main precaution to be taken is to ensure that the probes are brought
to the same axial positicn in the flow. The question then arises as to
whether it is the front face of the probe or the probe shock which has to
be brought to the same axial position. In the present series of tests the
front face of the probe has been brought to the same axial station each
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time because of the difficulty of matching shock positions for all the
probe sizes. However, if it is assumed that shock positions should be
matched, it is possible that the largest diameter probes indicated as
much as two percent higher impact pressures because of their more
forward shock positions. This effect wouid diminish as the probe diam-
eter is decreased. Thus, the minimum of the curve representing the
present data on Figs. 3 and 4 may be approximately one percent low in

The flow conditions at which the probes were tested are listed in
Table 1. The maximum probe size tested at a particular flow condition
was dictated by the extent of the useable test region. For all the con-
ditionsg this region was between 0.5 and 1. 2 inches in diameter.

3.0 PROCEDURE

The desired nozzle flow was established by adjusting the gas flow
rate and arc-heater power input to bring the reservoir conditions to the
operating level. When these conditions were achieved the probe under
test was brought to a predetermined axial station on the nozzle centerline,
A cathetometer was used tc fix the position of the probe face, and care
was taken to ensure that during any run any necessary corrections caused
by probe expansion were made.

4.0 DISCUSSION OF RESULTS

The present investigation can be divided into two parts, one on the
effect of orifice-to-probe diameter on the measured impact pressure at
low pressures and the other on the effect of probe diameter on the meas-
ured impact pressure at all pressures.

4.1 EFFECT OF ORIFICE SIZE ON IMPACT PRESSURE

In Fig. 2 the measured impact pressure for a range of probe diam-
eters is plotted versus the orifice~to-probe diameter ratioc. In Figs. 2a,
b, and ¢ at a reservair temperature of 4260°K the impact pressures
decrease as the orifice diameter decreases. This is consistent with the
data reported in Ref. 1. It will be noted that the percentage reduction
for the conditions occurring in Figs. 2b and c is less than that occurring
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in Fig. 2a. The main difference in these conditions is in the level of
impact pressure; for the higher pressure the orifice cffect is less. If,

as has been suggested in Ref. i, the reduction in pressure with decrease
in orifice size is related to a thermomolecular flow effect, then the
orifice effect would be smaller with an increase of impact pressure, as
observed. In Ref. 3 it has been shown that if tubes of varying diameter
with the same temperature difference between their ends have the same
low pressure applied to the hot end of the tube, then the smallest tube
will sense the lowest pressure at its cold end. This may be what occurred
with the impact probe. The pressure sensing crifice is exposed to the
pressure and temperature existing behind the normal shock at its up-
stream face and the colder gas inside the probe at its downstream face.
The temperature difference across the orifice possibly caused the above-
mentioned thermomolecular effect. The main difficulty lies in the fact
that at this time it seems impossible to assign any values to the gas
temperature immediately upstream and downstream of the orifice. The
problem is further complicated by the fact that the temperature behind
the shock at very low Reynolds numbers becomes a function of the probe
Reynolds number and temperature of the probe itself.

Levinsky and Yoshihara (Ref. 4) have shown an example wherein the
maximum temperature behind the shock falis to 0.8 of the stagnation
temperature-as the Reynolds number of a cooled hemispherical body de-
creases from 13,652 to 152. This complicates any calculation to correct
the measured impact pressure for thermomolecular flow effects since the
temperature upstream of the orifice is a function of Reynolds number as
well as Mach number and stagnation temperature. From Ref. 1 we found
how difficult it is to find a single temperature difference across the ori-
fice which would provide a reasonahle correction for all the probe diam-
eters possibly because of changing fluid property distributions in the
merged, viscous shock layer as Reynolds number varied.

For the data presented in Figs. 2d to h where the pressures in general
are higher and the reservoir temperatures are lower, the orifice effect
does not exist for the smallest orifice tested. Accordingly, for the high
pressure and relatively low temperature investigations reported in sec-
tion 4.2, only probes having orifice-to-probe diameter ratios of approxi-
mately 0.7 were studied. An approximately one percent decrease in
impact pressure is occasionally shown in Fig. 2 at the right extremities
of certain curves as was shown in Ref. 1. This possibly deserves further
investigation, but the pressure decrease is not a significant factor in the
present discussion because of its small magnitude.

4,2 EFFECT OF PROBE DNAMETER ON THE MEASURED IMPACT PRESSURE

The most important factor in the calibration of an impact probe is a
knowledge of the true impact pressure. In some of the earliest work on

4
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impact-pressure probes (Ref. 5) in the Reynolds number range from

2 to 12 a linear relationship was found to exist between the measured
impact pressure and the reciprocal of the probe diameter. This
experimental fact together with some theoretical work to further sub-
stantiate it seems to indicate that impact pressure obtained by extrapo-
lating to 1/D = 0 was the true impact pressure. The shortcomings of
this extrapolation became apparent when Sherman (Ref. 8) showed that
data plotted in this manner were nonlinear at the higher Reynolds num-
bers. This made it difficult to define accurately the true impact pres-
sure under the flow conditions that Sherman encountered. In fact,
Matthews (Ref. 7) shows that for Re_, = 100 to 6000 the measured impact
pressure was less than the true impact pressure. In his investigation
the low Reynolds numbers were obtained by testing small probes in a
well-calibrated, high density, hypersonic wind tunnel. Because the
theoretical considerations of Probstein and Kemp (Ref. 8) and Levinsky
and Yoshihara (Ref. 4) support the decrease of impact pressure at
relatively high Reynolds numbers shown by Matthews, it would seem
desirable to make tests to free-stream Reynolds ntmbers of at least
6000 when operating at Mach numbers greater than 5.5, To minimize

the influence of varying Mach number, the parameter Reg v’p2/p., is
used in the present report; Matthews' Re_ = 6000 corresponds to

Re, \j"pz/"pw = 2200.

Considerable operational flexibility is necessary to achieve such a
high Reynolds number in a small, very low density tunnel such as the
AEDC LDH tunnel. At the present time, such a degree of flexibility is
not available, but it was possible to achieve a probe Reynolds number of
approximately 1600 based on free-stream conditions or Re \" ng’pw = 800.
If it is assumed that Matthews' experimentally determined value of

/
pé)m/p,:;i is correct at Reg Ypy/p_ = 800, then the ratio p(;m/p:)i is 0.995,
Thue, little error is likely in assuming that the impact pressure meas-~
ured at the highest Reynolds numbers in the present experiments was the
true or ideal value. Proof of this is shown when the data for M = 4.51
and Reg V pg/p, = 801/in. are considered (Fig, 3). For the range of
probe sizes investigated at this flow condition it was possible to define the
pémlp(;i ratio over the range of Reg \/pg/pm from 70 to 800, Using this
curve, the true impact pressure for a probe at the next lower value of
Reqg \Eyzlpm was calculated, and the values of the ratio psm/pé_ were

7 i

calculated for the range of probe sizes and plotted on the same figure.
Using this bootstrap technique the variation of impact pressure was
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numbers than this a thermal-transpiration correction to the data is be-
lieved to be necessary, and no attempt will be made in this report to
evaluate this.

Figure 3 shows that the miniinum value of pbm/p(;i is approximately
0.93 and that it is almost constant at this value over Reg \fpg/pm range

from 25 to 120. In Ref. 1 a comparison was made of some of the impact
pressure probe data on the basis of free-stream Reynolds number, Apart
from Matthews' results all the data shown in Ref. 1 indicate that for

Re, > 200 the variation of pém/poli was constant and equal to unity. As

a result of the present tests and those of Matthews it may be conjectured
that the various low-density tunnel data may have gshown an increase of a
few percent in the ratio pém/pdi if they had been extended to much higher
Reynolds numbers.

The initial decrease of po'm/p(;i with decreasing Reg \/?2/'—;)—: is in

agreement with that predicted by Leevinsky and Yoshihara. Probstein
and Kemp also predict this decrease, but their calculated decrease is
greater than that predicted by Levinsky and Yoshihara. However,
Probstein and Kemp alsc show that diatomic and monatomic gases behave
differently, and the difference they predict is in qualitative agreement
with the difference shown to exist between the present monatomic argon
data and Matthews' diatomic air data. A compariscn of thege theoretical
and experimental data is shown in Fig. 4.

The data of Matthews and the present investigation cannot be com-
pared directly because in the former case T, - T, whereas in this
investigation Ty, - 0.25T,. However, in Ref. 4 it is stated that there is
no significant difference between the theoretically calculated impact pres-
sures obtained for both cold and adiabatic wall conditions. Therefore, it
is probably not very misleading tc assume that the heat-transfer effect
is small, at least under conditions corresponding to the higher Reynolds
numbers.

Also shown in Fig, 4 are some daia on water-cooled, hemispherical-
nosed, impact-pressure probes. The difference between these data and
the flat-faced data may be attributable to the difference in shape and wali
temperature.

5.0 CONCLUSIONS

It has been shown that as the pressure sensing orifice size decreased
the measured impact pressure decreased at the lower Reynolde numbers in
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the present series of tests in argon. This is in agreement with the
results obtained for nitrogen in Ref, 1. Furthermore it is shown that,
as the level of the impact pressure increased at a constant reservoir
temperature, then there was less decrease in measured pressure with
decrease in orifice size. In fact, at some of the highest impact pres-
sures encountered, there was nc decrease in measured pressure with
decrease in orifice size. This seems to provide some qualitative sup-
port of the suggestion made in Ref. 1 that this measured pressure
decrease was caused by a thermomolecular flow effect attributable to
a temperature difference across the pressure sensing orifice,

Over the Reynolds number range where there was no thermomolec-
ular flow effect, as the Reynolds number decreased, the ratio pc',m/po'i
decreased to a minimum of approximately 0.93 in argon and then, with
further decrease in Reynolds number, the viscous effects became sig-
nificant, and the ratio increased rapidly. According to this investiga-
tion the 'decrease of impact pressure at intermediate Reynoclds numbers
appears to be greater in argon than in air. This is predicted by the
theoretical analysis of Ref. 8, although the theory overestimates the
amount of the decrease. The theory of Ref. 4 yields results in closer
agreement with our experiments but again seems to overestimate the
decrease of impact pressure. Both theories fail to predict the upward
trend of impact pressure that begins when very low Reynolds numbers
are attained; the theoretical flow models are not applicable in that case.
Thus, comparison with these theoretical results should be confined to
the intermediate Reynolds numbers. Because of the complexity of the
theoretical analysis of the problem, confirmation of these theories in a
qualitative sense is a tribute to their originators. It also adds further
proof to the often questioned possibility that pg_ /pg; may fall below unity
in the intermediate range of Reynolds numbers prior to its rapid increase
at still lower Reynolds numbers.
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